Solvolyses of 4-Oxo- 2_{eq} - and - 2_{ax} -adamantyl Triflates: Significant Through-Bond Interaction of the β -Carbonyl Lone Pair with the Cationic p Orbital in Equatorial Solvolyses

Ken'ichi Takeuchi,^{*} Masayasu Yoshida, Yumiko Kurihara, Tomomi Kinoshita, and Toshikazu Kitagawa

Division of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan

Received March 17, 1994 (Revised Manuscript Received August 11, 1994[®])

The rates of solvolysis in ethanol, methanol, 2,2,2-trifluoroethanol (TFE), and aqueous ethanols at 25 °C have been determined for 4-oxo- 2_{eq} - and -2_{ax} -adamantyl trifluoromethanesulfonates (triflates) (1_{eq} -OTf and 1_{ax} -OTf, respectively). 1_{eq} -OTf solvolyzed faster than 1_{ax} -OTf by a factor of 15–24 in the solvents examined, supporting the idea of through-bond stabilization of the transition state in the ionization of 1_{eq} -OTf. In trifluoroethanolysis, both 1_{eq} -OTf and 1_{ax} -OTf gave the equatorial substitution products 1_{eq} -OTFE and 3-OTFE (by fragmentation) as major products, indicating that through-bond interaction is at work not only in the ionization step but also in the product-forming step. On the other hand, in methanolysis, both triflates afforded the corresponding inverted methyl ethers as major product. The intervention of a nucleophilically solvated ion pair intermediate has been suggested.

Introduction

The through-bond interaction of a β -carbonyl lone pair with a cationic p orbital was proposed by Vogel and coworkers as pC(1)⁺ $\leftrightarrow \sigma$ C(2)C(3) \leftrightarrow n(CO) hyperconjugative interaction in a C(1)⁺-C(2)-C(3)=O species.¹ This concept was successfully used in rationalizing the effect of the carbonyl group in regiospecific electrophilic additions to the double bond of olefinic ketones.^{1,2} Recently, we used the solvolyses of the 3-oxobicyclo[2.2.2]oct-1-yl system to quantitatively evaluate the through-bond stabilization of the bridgehead cation and showed that the cation would be more stable by 4–5 kcal/mol than expected from the electron-withdrawing effect of the carbonyl group.³

In order that such an interaction develops, the orbitals have to overlap properly. The 3-oxobicyclo[2.2.2]oct-1yl system has a nice geometry that permits an almost complete overlapping arrangement of the carbonyl lonepair, C(2)-C(3) σ bond, and the cationic p orbital. However, this system has a drawback in that we cannot control the degree of orbital overlap. For such a purpose, the 4-oxo-2-adamantyl system appeared to be suitable since the direction of the developing p orbital of the 4-oxo-2-adamantyl cation can be controlled by using the equatorial and axial isomers. It was expected that the equatorial triflate (1_{eq} -OTf) has a favorable geometry for an overlap arrangement of orbitals, but it is not the case with the axial triflate (1_{ax} -OTf). The solvolysis rate study revealed the stabilization of the equatorial transition state by through-bond interaction.⁴ The product study in TFE showed that the through-bond interaction is at work not only in the ionization step, but also in the product-forming step. On the other hand, the results of methanolysis were interpreted by postulating an S_N2 (intermediate) mechanism.

Results

Synthesis of Solvolysis Substrates. 4-Oxo- 2_{eq} - and -2_{ax} -adamantanols (1_{eq} -OH and 1_{ax} -OH, respectively) were prepared by previously reported methods⁵ and converted to the corresponding triflates (1_{eq} -OTf and 1_{ax} -OTf) by treatment with triflic anhydride in CH₂Cl₂ in the presence of pyridine. The triflates were too unstable to isolate at room temperature; therefore, the worked-up CH₂Cl₂ solution was stabilized by adding 20 mol % of 2,6-lutidine, concentrated to approximately 30 v/v %, and then subjected to solvolysis studies. The ¹³C NMR spectra of the triflate solutions showed that the triflates were essentially pure ($\geq 97\%$).

Solvolysis Rates. The solvolyses were conducted in the presence of 2,6-lutidine and the rates determined conductimetrically. Although the solvolyses of 2-ada-

[®] Abstract published in Advance ACS Abstracts, October 1, 1994. (1) (a) Carrupt, P.-A.; Avenati, M.; Quarroz, D.; Vogel, P. Tetrahedron Lett. **1978**, 4413. (b) Avenati, M.; Carrupt, P.-A.; Quarroz, D.; Vogel, P. Helv. Chim. Acta **1982**, 65, 188. (c) Carrupt, P.-A.; Vogel, P. Ibid. **1989**, 72, 1008.

^{(2) (}a) Lajunen, M. Acc. Chem. Res. **1985**, *18*, 254. (b) Lajunen, M.; Lahti, M.; Heimo, S. Acta Chem. Scand. **1989**, *43*, 771.

^{(3) (}a) Takeuchi, K.; Yoshida, M. J. Org. Chem. **1989**, 54, 3772. (b) Yoshida, M.; Takeuchi, K. Ibid. **1993**, 58, 2566.

⁽⁴⁾ Yoshida, M.; Mitsuhashi, K.; Kimura, T.; Takeuchi, K.; Fukuyo, E.; Yanagi, K. *Chem. Lett.* **1992**, 1771.

^{(5) (}a) Faulkner, D.; McKervey, M. A. J. Chem. Soc. (C) 1971, 3906.
(b) Yoshida, M.; Kurihara, Y.; Takeuchi, K. Synth. Commun. 1990, 20, 3529.

Table 1. Rate Data of Solvolysis of 1_{eq} -OTf, 1_{ax} -OTf, and
2-OTf in Various Solvents^a

compound	solvent	temp (°C)	$k_1 ({ m s}^{-1})^b$	ΔH^{\ddagger} (kcal/mol)	ΔS^{\ddagger} (eu)
1 _{eq} -OTf	EtOH	25.0	$1.87 imes10^{-3}$ c		
	80% EtOH	25.0	$1.82 imes 10^{-2}$ c	18.4	-4.8
		5.2	$1.86 imes10^{-3}$ c		
	60% EtOH	25.0	$6.86 imes10^{-2}$ c		
	MeOH	25.0	$6.93 imes10^{-3}$ c		
	TFE	25.0	$1.10 imes 10^{-2~c,d}$	20.6	1.5
		3.7	$7.03 imes10^{-4}$ c,d		
1 _{ax} -OTf	EtOH	25.0	$1.08 imes10^{-4}$ c		
	80% EtOH	25.0	$1.19 imes10^{-3}$ c	21.1	-1.2
		40.0	$6.87 imes10^{-3}$ c		
	60% EtOH	25.0	$4.56 imes10^{-3}$ c		
	MeOH	25.0	$3.24 imes10^{-4}$ c		
	TFE	25.0	$4.60 imes10^{-4}$ c,d	21.8	-0.7
		40.0	$2.81 imes10^{-3}$ c,d		
2-OTf	EtOH	25.0	$3.72 imes10^{-4}$ e		
	80% EtOH	25.0	$2.13 imes 10^{-2}$ e		
	MeOH	25.0	$2.82 imes10^{-3}$ e		
	TFE	25.0	$1.30 imes10^{-1f}$	18.7	0.3
		4.2	$1.12 imes10^{-2}$ c		
		-14.0	$9.52 imes10^{-4}$ c		

^{*a*} Buffered with 0.025 M 2,6-lutidine except in TFE. ^{*b*} Determined by a single run. In all cases the correlation coefficient for the first-order plot was greater than 0.999. ^{*c*} Determined conductimetrically within an experimental error of $\pm 0.5\%$ by using 2 × 10^{-4} M of the substrate. ^{*d*} Buffered with 1.2×10^{-3} M 2,6-lutidine. ^{*e*} See ref 6a. ^{*f*} Extrapolated from data at other temperatures.

Table 2. Various Rate Ratios of Solvolysis in Various Solvents at 25 °C

	rate ratio			
solvent	1 _{eq} -OTf/1 _{ax} -OTf	1 _{eq} -OTf/2-OTf	1 _{ax} -OTf/2-OTf	
EtOH	17	5.0	0.29	
80% EtOH	15	0.85	0.056	
60% EtOH	15			
MeOH	21	2.5	0.11	
TFE	24	0.085	0.0035	

mantyl triflate (**2-OTf**) had been extensively studied,⁶ its rate in 100% TFE at 25 °C had not been reported:⁷ therefore, we determined the rate at 25 °C by extrapolation from data at lower temperatures. All the substrates followed good first-order kinetics (r > 0.999) over 80– 90% reactions. The rate data and activation parameters in various solvents are summarized in Table 1. In Table 2 are shown the rate ratios 1_{eq} -OTf: 1_{ax} -OTf, 1_{eq} -OTf:2-OTf, and 1_{ax} -OTf:2-OTf.

Solvolysis Products. The solvolyses of 1_{eq} -OTf and 1_{ax} -OTf were conducted in TFE and methanol on 0.040 M substrate solutions containing 0.050 M 2,6-lutidine at 25 °C for a period longer than 10 half-lives. The product distribution was directly determined by GLC for the reaction mixture. In all cases, the product consisted of equatorial substitution product (1_{eq} -OR), axial substitution product (1_{ax} -OR), and fragmentation product (3-OR). The results are summarized in Tables 3 and 4.

Discussion

The Effect of the 4-Oxo Substituent on Solvolysis Rates. In all the solvents used, 1_{eq} -OTf solvolyzed faster than 1_{ax} -OTf by a factor of 15–24. Although small, this factor would be attributed to the presence of the throughbord stabilization of the transition state of ionization in

Table 3. Product Distributions in the Trifluoroethanolysis of 1_{eq} -OTf and 1_{ax} -OTf at 25 °C^a

	product distribution (%) ^b			
compd	equatorial product 1 _{eq} -OTFE	axial product 1 _{ax} -OTFE	fragmentation product 3-OTFE	
1_{eq} -OTf ^c 1_{ax} -OTf ^d	$\begin{array}{c} 35\\51\end{array}$	$\begin{array}{c} 10\\ 3.2 \end{array}$	52 44	

 a For reaction conditions, see text. b Determined by GLC within an experimental error of $\pm 0.5\%$. c An unidentified product of 3% was detected. d An unidentified product of 2% was detected.

Table 4. Product Distributions in the Methanolysis of 1_{eq} -OTf and 1_{ax} -OTf at 25 °C^a

	product distribution $(\%)^b$				
compd	equatorial product	axial product	fragmentation		
	1 _{eq} -OMe	1 _{ax} -OMe	product 3-OMe		
1 _{eq} -OTf	3	542	43		
1 _{ax} -OTf ^c	82		14		

 a For reaction conditions, see text. b Determined by GLC within an experimental error of $\pm 0.5\%$. c An unidentified product of 2% was detected.

 1_{eq} -OTf and its unimportance in 1_{ax} -OTf. As illustrated by 4 and 5, although 1_{eq} -OTf has a favorable geometry to assume overlap arrangement of the carbonyl lone-pair, C-C σ bond, and cationic p orbital, it is not the case with 1_{ax} -OTf. However, this factor of 15-24 is much smaller

than 10^3-10^4 that was estimated as the rate enhancement factor in the solvolysis of 3-oxobicyclo[2.2.2]oct-1yl triflate.³ This large discrepancy shows that efficient through-bond interaction is effected only when antiperiplanar arrangement can be attained. In the transition state from 1_{eq} -OTf the cationic p orbital is tilted from the C-C=O plane by about 60°. By assuming that the orbital interaction is proportional to $\cos^2 \phi$ in energy scale,⁸ the rate enhancement is predicted as $10^{0.75} (\approx 6)$ -10, which is fairly close to the value 15-24 obtained for 1_{eq} -OTf.

The insignificance of the difference between their ground state energies in determining the rate ratio was supported by MM2(87) calculations.⁹ From lack of the parameters for sulfonates, the calculations were performed on their corresponding alcohols to show that 1_{eq} -OH is only 0.2 kcal/mol less stable than 1_{ax} -OH with respect to their steric energies (24.0 and 23.8 kcal/mol, respectively). Consequently, the experimental 1_{eq} -OTf: 1_{ax} -OTf rate ratio of 15–24 would be reasonably attributed to the presence of stabilization in the incipient carbocation from 1_{eq} -OTf and its absence for 1_{ax} -OTf.

Solvolysis Intermediates in Trifluoroethanol. The most notable feature of trifluoroethanolysis of 1_{eq} -OTf and 1_{ax} -OTf is that they gave the equatorial substitution product 1_{eq} -OTFE in greater amounts than the axial product 1_{ax} -OTFE with the 1_{eq} -OTFE: 1_{ax} -OTFE ratio 35:10 from 1_{eq} -OTF and 51:3.2 from 1_{ax} -OTF (Table 3). The results may be explained by assuming that the equatorial ion pair is in equilibrium with the axial ion

^{(6) (}a) Kevill, D. N.; Anderson, S. W. J. Org. Chem. 1985, 50, 3330.
(b) Bentley, T. W.; Roberts, K. Ibid. 1985, 50, 4821.

⁽⁷⁾ The rate of **2-OTf** in 97% TFE at 25 °C has been determined^{6b} but that in 100% TFE has been reported only for -20 °C.^{6a}

⁽⁸⁾ DeFrees, D. J.; Hehre, W. J.; Sunko, D. E. J. Am. Chem. Soc. **1979**, 101, 2323.

⁽⁹⁾ The MM2(87) program was obtained from QCPE.

Solvolyses of 4-Oxo-2eq- and -2ax-adamantyl Triflates

pair and that the former is favored, being stabilized by the through-bond orbital interaction between the carbonyl lone pair and the cationic p orbital (Scheme 1). The assumption of the presence of the two equilibrating ion pairs is based on the recently reported ab initio calculations on the 2-adamantyl cation which suggest that the cation may exist as a pair of rapidly equilibrating ion pairs having nonplanarity at the cation center.¹⁰ The formation of 1_{ax} -OTFE in a greater amount from 1_{eq} -OTf than from 1_{ax} -OTF appears to be explained in terms of an S_N2 (intermediate) mechanism¹¹ though it should be less important than in methanolysis (vide infra).

Solvolysis Intermediates in Methanol. In contrast to trifluoroethanolysis, the most notable feature of methanolysis of 1_{eq} -OTf and 1_{ax} -OTf is that it gives the inversion product in greater amounts than the retention product with the 1eg-OMe:1ax-OMe ratio 3:54 from 1eg-OTf and 82:2 from 1_{ax}-OTf (Table 4). Such characteristic behavior was actually utilized in the synthesis of 1_{eq} -OH and 1_{eq} -OMe from relatively easily available 1_{ax} -**OTf**.^{5b} These results suggest that the nucleophilic solvent attack from the rear side of the leaving group can happen even in a 2-adamantyl system in spite of the typical $k_{\rm c}$ character of the parent 2-adamantyl system.^{11a,b} Probably, this would be ascribed to retarded rates of solvolysis and development of slight positive charge at the reaction center in the ground state owing to the presence of the electron-withdrawing 4-oxo group. There might be slight deformation of the adamantyl structure that would make the k_s process easier. Despite significant rear-side attack by methanol, considerable amounts of fragmentation product 3-OMe (43% from 1_{eq} -OTf and 14% from $\mathbf{1}_{ax}$ -OTf) was produced, although in smaller amounts than 3-OTFE (52% from 1_{eq} -OTf and 44% from 1_{ax} -OTf) (Tables 3 and 4). The formation of these methanolysis products may be rationalized by an S_N2 (intermediate) mechanism¹¹ which involves the nucleophilically solvated ion pair intermediates as shown in Scheme 2. The amount of **3-OMe** from 1_{eq} -OTf (43%) is greater than that from 1_{ax} -OTf (14%), suggesting the greater through-bond interaction in the solvated equatorial ion pair intermediate than in the solvated axial one. The predominant inversion of configuration in the methanolysis of 1_{eq} -OTf and 1_{ax} -OTf is in striking contrast to the solvolysis of 2-adamantyl substrates having an electron-withdrawing substituent on the 4- or 5-position, which generally give a greater amount of syn substitution product than *anti* one.¹²

The Effect of Solvent on Solvolysis Rates. The mY relations provide useful information about solvolysis mechanism. In Figure 1 are shown the mY relations of

Figure 1. Plots of log k_1 for solvolyses of 1_{eq} -OTf, 1_{ax} -OTf, and **6-OTf** vs $Y_{2-AdOTf}$ at 25 °C. Open and closed circles, and triangles are for 1_{eq} -OTf (r = 0.999), 1_{ax} -OTf (r = 0.999), and **6-OTf** (r = 1.000), respectively. The data for **6-OTf** were taken from ref 3b and shifted downward by 2 units. E, M, T, and A stand for ethanol, methanol, TFE, and acetone, respectively, and the attached numbers mean their vol percentages in aqueous solutions. The 100T points are not included in the correlations.

1_{eq}**-OTf** and **1**_{ax}**-OTf** in ethanol, methanol, TFE, and aqueous ethanols at 25 °C by the use of $Y_{2-AdOTf}$.⁶ The previously reported mY relation for 3-oxobicyclo[2.2.2]-oct-1-yl triflate (**6-OTf**)^{3b} is also reproduced in Figure 1 for a comparative purpose.

Similarly to 3-oxobicyclo[2.2.2]oct-1-yl triflate (6-OTf), both 1_{eq} -OTf and 1_{ax} -OTf give nicely linear $mY_{2-AdOTf}$ relations (r = 0.999 for both triflates) (excluding the TFE data) with very small m values (0.57 for 1_{eq} -OTf and 0.61 for 1_{ax} -OTf). Notably, these m values are even smaller than that for 3-oxobicyclo[2.2.2]oct-1-yl triflate (6-OTf) (m = 0.75).^{3b} These smaller m values in the 4-oxo-2adamantyl system would be attributed not only to the through-bond interaction, but also to the nucleophilic assistance by the solvents with high nucleophilicity.¹³ It is also noted that the TFE point for each substrate deviates from its correlation line. Similarly to the case of 3-oxobicyclo[2.2.2]oct-1-yl triflate,^{3b} this deviation is probably ascribed to destabilization of the intermediate carbocation by a hydrogen-bonding interaction between

⁽¹⁰⁾ Dutler, R.; Rauk, A.; Sorensen, T. S.; Whitworth, S. M. J. Am. Chem. Soc. 1989, 111, 9024.

^{(11) (}a) Bentley, T. W.; Schleyer, P. v. R. J. Am. Chem. Soc. 1976, 98, 7658.
(b) Schadt, F. L.; Bentley, T. W.; Schleyer, P. v. R. Ibid. 1976, 98, 7667.
(c) Bentley, T. W.; Bowen, C. T.; Morten, D. H.; Schleyer, P. v. R. Ibid. 1981, 103, 5466.
(d) Bentley, T. W.; Carter, G. E. Ibid. 1982, 104, 5741.

^{(12) (}a) Grob, C. A.; Wittwer, G.; Rao, K. R. Helv. Chim. Acta 1985, 68, 760.
(b) Nordlander, J. E.; Haky, J. E. J. Am. Chem. Soc. 1981, 103, 1518.
(c) Cheung, C. K.; Tseng, L. T.; Lin, M.-H.; Srivastava, S.; le Noble, W. J. Ibid. 1986, 108, 1598.

^{(13) (}a) Bentley, T. W.; Schleyer, P. v. R. Adv. Phys. Org. Chem. 1977, 14, 1. (b) Bentley, T. W.; Llewellyn, G. In Progress in Physical Organic Chemistry; Taft, R. W. Ed.; Wiley-Interscience: New York, 1990; Vol. 17, pp 121–158.

the carbonyl oxygen and TFE $(pK_a \ 12.37^{14})$. Such an interaction of a highly acidic solvent with a carbonyl oxygen has been shown by the IR absorption shift for the carbonyl stretching vibration of camphor in hexafluoro-2-propanol.¹⁵ Similar hydrogen-bonding interactions with ether oxygen,¹⁶ sulfur,¹⁷ and amino nitrogen¹⁷ have also been reported to cause deviations in mY relations.

Through-Bond Stabilization of 4-Oxo-2-adamantyl Radical. More than two decades ago, Tabushi, Aoyama, and Yoshida studied the radical bromination of adamantanone with BrCCl₃, NBS, and CH₂Br₂ and found that the equatorial:axial selectivity ratio at the radical-transfer step of 4-oxo-2-adamantyl radical to give 1_{eq} -Br and 1_{ax} -Br was 2.3-4.3.¹⁸ They interpreted the greater equatorial selectivity in terms of a dipolar effect and/or a steric factor. However, it now appears more reasonable to explain the greater equatorial selectivity in terms of the through-bond orbital interaction between the carbonyl lone pair and the p orbital of the radical center in the radical-transfer transition state. This kind of orbital interaction even in neutral molecules has been observed by photoelectron spectroscopy.¹⁹

Experimental Section

Melting points are uncorrected. IR spectra were recorded on Hitachi 215 and Perkin-Elmer 1640 spectrophotometers. ¹H and ¹³C NMR spectra were recorded on a JEOL FX90A spectrometer by using TMS as an internal standard. The 4eqand 4_{ax} -hydroxy-2-adamantanones (1_{eq} -OH and 1_{ax} -OH, respectively)⁵ and 4-oxo- 2_{ax} -adamantyl triflate $(1_{ax}$ -OTT)^{5b} were prepared as described previously. The methanolysis and hydrolysis of 1ar-OTf have been reported.5b 2-Adamantyl triflate (2-OTf) was synthesized following a literature procedure.⁶ Ethanol and methanol were refluxed over the corresponding magnesium alkoxides and distilled. Acetone and 2,2,2-trifluoroethanol were stored over 4- and 5-Å sieves, respectively, and distilled. Methylene chloride was refluxed over P_2O_5 and distilled. Triflic anhydride was prepared by dehydration of triflic acid with P_2O_5 . Pyridine and 2,6-lutidine were dried over KOH and distilled. The other reagents were of a reagent grade quality and used as received. Medium pressure liquid chromatography (MPLC) was conducted on Merck silica gel 60 (230-400 mesh).

4-Oxo-2eq-adamantyl Triflate (1eq-OTf). To a stirred solution of 4_{eq} -hydroxy-2-adamantanone (1_{eq} -OH) (0.052 g, 0.313 mmol) and pyridine (0.052 g, 0.657 mmol) in CH_2Cl_2 (2 mL) was added a solution of triflic anhydride (0.106 g, 0.376 mmol) in CH₂Cl₂ (2 mL) at 0 °C over 10 min, and then stirring was continued for 2 h. The reaction mixture was diluted with CH₂Cl₂ (10 mL), washed at 0 °C with H₂O (3 \times 10 mL), 5% HCl (4 \times 10 mL), H₂O (2 \times 10 mL), and dried (MgSO₄). Since a preliminary experiment revealed that 1eq-OTf was too unstable a liquid to isolate at room temperature, the above CH_2Cl_2 solution was stabilized by adding 2,6-lutidine (0.007 g, 0.065 mmol), concentrated to approximately 2 mL with a rotary evaporator and then subjected to solvolysis studies: ^{13}C NMR (22.5 MHz, CD₂Cl₂) & 26.3, 32.4, 44.9, 52.4, 89.5 (CH), 29.6, 31.2, 33.7, 38.7 (CH₂), 210.3 (C=O).

Product of Solvolysis of 1_{eq}-OTf in 2,2,2-Trifluoroethanol: A Typical Procedure. To a CH₂Cl₂ solution (ca. 2 mL) of 1_{eq} -OTT prepared from 1_{eq} -OH (0.184 g, 1.11 mmol) was added a solution of 0.050 M 2,6-lutidine in TFE (22.2 mL) and the resulting solution kept at 25 °C for 1.7 h (97 halflives). GLC (PEG 20 M) analyses of the reaction mixture exhibited the formation of 4_{eq} -(2,2,2-trifluoroethoxy)adamantan-2-one (1_{eq} -OTFE) (35%), 4_{ax} -(2,2,2-trifluoroethoxy)adamantan-2-one (1ar-OTFE) (10%), and 2,2,2-trifluoroethyl bicyclo-[3.3.1]non-2-ene-7-carboxylate (3-OTFE) (52%). After most of the TFE had been removed with a rotary evaporator, the residue was dissolved in CH_2Cl_2 (50 mL) and the solution washed with 10% NaCl (30 mL), 5% HCl (3 \times 30 mL), 10% NaCl (30 mL), saturated NaHCO₃ (30 mL), and dried (MgSO₄). Evaporation of solvent afforded a pale yellow liquid, which on MPLC (SiO₂, hexane-ether (9:1, 8:2)) gave **3-OTFE** (0.091 g, 33%), 1_{eq} -OTFE (0.071 g, 26%), and a mixture (0.051 g) of 1_{ax} -OTFE and an unknown compound (ca. 5%) (74:26 in mol), all as pale yellow liquids, in this sequence. The low yields of the

⁽¹⁴⁾ Ballinger, P.; Long, F. A. J. Am. Chem. Soc. 1959, 81, 1050.
(15) Laurence, C.; Berthelot, M.; Lucon, M.; Helbert, M.; Morris, D.
G.; Gal, J.-F. J. Chem. Soc., Perkin Trans. 2 1984, 705.
(16) Jursic, B.; Ladika, M.; Sunko, D. E. Tetrahedron 1986, 42, 911.

⁽¹⁷⁾ McManus, S. P.; Sedaghat-Herati, M. R.; Karaman, R. M.; Neamati-Mazraeh, N.; Cowell, S. M.; Harris, J. M. J. Org. Chem. 1989, 54, 1911

⁽¹⁸⁾ Tabushi, I.; Aoyama, Y.; Yoshida, Z. J. Am. Chem. Soc. 1971, 93, 2077.

⁽¹⁹⁾ Carrupt, P.-A.; Gabioud, R.; Rubello, A.; Vogel, P.; Honegger, E.; Heilbronner, E. Helv. Chim. Acta 1987, 70, 1540, and references cited therein.

products were due to their high volatility. 1_{eq} -OTFE: ¹H NMR (89.55 MHz, CDCl₃) δ 1.5–2.8 (m, 12 H), 3.65 (br, 1 H), 3.89 (q, 2 H, J = 8.6 Hz); ¹³C NMR (22.5 MHz, CDCl₃) δ 26.2, 30.7, 45.0, 50.7, 81.2 (CH), 29.4, 32.0, 32.7, 38.2 (CH₂), 65.6 (q, CF₃CH₂, J = 34 Hz), 123.6 (q, CF₃, J = 279 Hz), 213.3 (C=O). 1_{ax} -OTFE: ¹³C NMR (22.5 MHz, CDCl₃) δ 26.3, 31.4, 46.1, 50.7, 86.4 (CH), 32.7, 34.9, 37.7, 38.7 (CH₂), 65.3 (q, CF₃CH₂, J = 34 Hz), 123.8 (q, CF₃, J = 279 Hz), 214.9 (C=O). **3-OTFE**: ¹H NMR (89.55 MHz, CDCl₃) δ 1.5–2.8 (m, 11 H), 4.34 (q, 2 H, J = 8.6 Hz), 5.77 (br, 2 H); ¹³C NMR (22.5 MHz, CDCl₃) δ 26.2, 28.3, 35.7, 128.9, 130.3 (CH), 29.6, 31.2, 31.4, 31.7 (CH₂), 60.2 (q, CF₃CH₂, J = 36 Hz), 123.3 (q, CF₃, J = 277 Hz), 173.7 (C=O).

Product of Solvolysis of 1_{ax} -OTf in 2,2,2-Trifluoroethanol. From a CH₂Cl₂ solution (ca. 2 mL) of 1_{ax} -OTf, which had been prepared from 1_{ax} -OH (0.400 g, 2.41 mmol), in 0.050 M 2,6-lutidine in TFE (48.2 mL) at 25 °C for 5.1 h (12.2 halflives) was obtained a pale yellow liquid, which on MPLC (SiO₂, hexane-ether (9.5:0.5, 7:3)) afforded 3-OTFE (0.189 g, 32%), 1_{eq} -OTFE (0.243 g, 41%), and a mixture (0.032 g) of 1_{ax} -OTFE and an unknown compound (2:1 mol ratio), all as pale yellow oils, in this sequence.

Product of Solvolysis of 1_{eq} -OTf in Methanol: A Typical Procedure. To a CH₂Cl₂ solution (ca. 2 mL) of 1_{eq} -OTf prepared from 1_{eq} -OH (0.140 g, 0.842 mmol) was added a solution of 0.050 M 2,6-lutidine in methanol (16.8 mL) and the resulting solution kept at 25 °C for 19 h (684 half-lives). GLC (PEG 20 M) analyses of the reaction mixture exhibited the formation of 4_{eq} -methoxy-2-adamantanone (1_{eq} -OMe) (3%), 4_{ax} -methoxy-2-adamantanone (1_{ex} -OMe) (54%), and methyl bicyclo[3.3.1]non-2-ene-7-carboxylate (3-OMe) (43%). After most of the methanol had been removed with a rotary

evaporator, the residue was dissolved in CH_2Cl_2 (25 mL) and the solution washed with 10% NaCl (30 mL), 5% HCl (4 × 15 mL), 10% NaCl (15 mL), saturated NaHCO₃ (15 mL), and dried (MgSO₄). Evaporation of solvent afforded a pale yellow liquid, which on MPLC (SiO₂, hexane-ether (9:1, 8:2)) gave **3-OMe** (0.040 g, 26%) and 1_{ar} -OMe (0.061 g, 40%), both as colorless liquids, in this sequence. The low yields of the products were due to their high volatility. Although the amount of 1_{eq} -OMe (3%) was too low to isolate, it was identified by GLC whose retention time agreed with that of 1_{eq} -OMe obtained in the methanolysis of 1_{ar} -OTf.^{5b} The ¹³C NMR data of **3-OMe**^{5b} and 1_{ar} -OMe²⁰ agreed with reported data.

Kinetic Studies. The preparation of solvents and kinetic methods were described previously.²¹ Conductimetric measurements were carried out in the presence of 2,6-lutidine (1.2 $\times 10^{-3}$ M in TFE and 0.025 M in the other solvents) with 2 $\times 10^{-4}$ M substrate concentration.

Acknowledgment. This work was supported by Grant-in-Aid for Scientific Research No. 04650755 from the Ministry of Education, Science and Culture, Japan.

Supplementary Material Available: ¹³C NMR spectra for new compounds 1_{eq} -X and 1_{ax} -X (X = OTf, OTFE) and 3-X (X = OMe, OTFE) (6 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

 ⁽²⁰⁾ Duddeck, H.; Wolff, P. Org. Magn. Reson. 1977, 9, 528.
 (21) Takeuchi, K.; Ikai, K.; Shibata, T.; Tsugeno, A. J. Org. Chem.
 1988, 53, 2852.